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We develop a novel transformation that maps the linear, nonhomogeneous, multidimensional population balance equa-
tion (PBE) into an advection equation that is readily solved using the method of characteristics. The PBEs targeted by
this transformation exclude aggregation, breakage, and time dependent birth and death rates. In addition, internal coor-
dinates are assumed to grow independently of each other. The ensuing general formulation is then used to recover
closed-form analytical solutions for problems with monosurface and bulk-diffusion growth-rates as well as Gaussian-
type nucleation. For completeness, we derive the multidimensional Green’s functions for our approach. This is followed
by a brief discussion on how the proposed framework may be used for code verification of moment methods such as the
quadrature method of moments and the direct quadrature method of moments. Finally, a sample Mathematica code is
provided to derive analytical solutions for the single-internal-coordinate case given user-specified growth, birth, and
death rates. VC 2015 American Institute of Chemical Engineers AIChE J, 00: 000–000, 2015
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Introduction

The analysis of reactive, dispersed-phase systems usually
depends on an accurate representation of the behavior of par-
ticles, droplets or bubbles, their chemistry, and hydrody-
namic interactions. This type of analysis is generally
approached by solving some form of the population balance
equation (PBE) coupled with momentum and species
transport.

The solution to population balances is usually complicated
due to the nature of the coupling between the particle distri-
bution, its internal coordinates, and the mass balance require-
ments when precipitation and dissolution take place. While
analytical methods provide detailed solutions to simple prob-
lems, numerical methods remain the key approach in resolv-
ing the dynamics of PBEs. The most notable numerical
techniques to solve PBEs are the quadrature method of
moments (QMOM) and the direct quadrature method of
moments (DQMOM). These were pioneered by McGraw,1,2

and Marchisio et al.3–7 among others. Both QMOM and
DQMOM aim at tracking the moments of the PBE, hence,
much of the information contained in the particle distribution
are smoothed by these methods. They remain, however, the
most commonly used approaches.

Analytical solutions, conversely, provide an avenue for
closed form, simple evaluations that help in identifying
short- and long-term behavior of a particular model. They

also serve as a benchmark for guiding experimental and
numerical investigations.

There have been many efforts in the literature to derive
analytical solutions for population balances under a variety
of physical conditions. The most common approach employs
a similarity transformation. Schumann,8 as cited by Pulver-
macher and Ruckenstein,9 was probably the first to observe
that the distribution of colloid particles may be represented
by a single similarity variable. He made this observation
while studying colloidal suspensions in fog. Later, Pulver-
macher and Ruckenstein9 made significant contributions to
the use of similarity transforms by solving a two-
dimensional coagulation equation. They identified the
regions where similarity transforms exist and when a solu-
tion is admissible. Among other contributions, one may cite
the work of Scott,10 and Kapur and coworkers.11,12

Diemer and Olson13–15 made further advances to the use
of similarity transforms in a three-part study. Their work
aimed at reconstructing the particle-size distribution from the
moments by using a set of basis functions derived from the
analytical solution for small-size particles in conjunction
with information for large-size particles. Their analytical
solution used a similarity transform congruent with previous
results. Additional contributions by Diemer can be found in
his two manuscripts published in 2006.16,17

In this study, we present a novel transformation that maps
a special form of the multidimensional nonhomogeneous
PBE into a homogeneous advection equation with the growth
rates taking the role of the advecting velocities. The method
requires that the birth and death terms be a function of the
internal coordinates only. At the outset, this transformation
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allows one to easily and systematically derive exact solutions
for a population with an arbitrary number of internal coordi-
nates using the method of characteristics. While it may be
argued that all linear PBEs are amenable to analytical solu-
tions, these usually lead to algebraic complications that require
repeated derivation efforts if one desires to change the growth
rates or source terms for instance. Our proposed transformation
removes this complexity and casts the general solution for
PBEs in a format that may be applied with little effort.

Compared to the similarity transform, the method of char-
acteristics provides a time-accurate resolution of population
dynamics while similarity transforms typically describe long-
term (often asymptotic) behavior. Conversely, similarity
transforms are more effective at handling nonlinear birth and
death rates such as those occuring in aggregation and
breakage.

The article is organized as follows. We first discuss our
mathematical model for a single-internal-coordinate PBE.
For convenience, a step-by-step approach to implementing
the proposed transformation and deriving new solutions is
developed. These steps are then used to derive analytical sol-
utions for two hypothetical problems with monosurface and
bulk-diffusion growth, respectively. We then generalize our
transformation to PBEs with an arbitrary number of internal
coordinates. This generalization entails the assumption that
growth rates only depend on their corresponding internal
coordinate. For completeness, we derive the multidimen-
sional Green’s functions and verify that they are congruent
with the derived solution. This is followed by an overview
of how these solutions may be used for code verification of
numerical PBE solvers such as QMOM and DQMOM.
Finally, a sample Mathematica code is provided for deriving
analytical solutions for the single-internal-coordinate case
given user-specified growth, birth, and death rates.

Mathematical Formulation

Consider a well-mixed reactor in which a population of
particles with a single property of interest—or internal coor-
dinate—such as size, composition, and so forth, is evolving
in time. The assumption of a well-mixed reactor allows us to
neglect hydrodynamic effects and is congruent with a well-
mixed batch crystallizer. These are used consistently in mod-
eling industrial processes and provide a valuable avenue for
reduced-order models of complex systems. The initial condi-
tion in the reactor may correspond to a predefined seed dis-
tribution or a clean mixture with no particles. The particles
are subsequently allowed to nucleate, grow, and dissolve.

To describe the temporal evolution of the particles in
internal coordinate space, we employ the PBE for the num-
ber density function N. The number density function is
defined as the number of particles per unit volume, per prod-
uct of unit particle properties. At the outset, the PBE is
given by7,18,19

@Nðr; tÞ
@t

1
@gðrÞNðr; tÞ

@r
5hðrÞ; hðrÞ � bðrÞ2dðrÞ (1)

where N r; tð Þ is the number density function, r is the internal
coordinate, g(r) is the growth rate defined as gðrÞ5dr=dt,
and b(r) and d(r) are particle birth and death terms, respec-
tively. Both b(r) and d(r) are assumed to be independent of
N(r, t) and time. As a consequence, this study excludes
breakage and aggregation terms. For an analytical treatment
of aggregation and breakage, the reader is referred to Vigil

and Ziff20 who derive steady-state solutions for a generalized
coagulation-fragmentation equation. Finally, the initial condi-
tion is prescribed by N0ðrÞ � N r; 0ð Þ.

Transformation

Being linear and first order, Eq. 1 may be solved using a
variety of techniques such as the method of characteristics.
However, in its current nonhomogeneous form, the solution
of Eq. 1 leads to unnecessary algebraic complications that
may prevent a complete solution in closed form.

Here, we introduce a novel transformation that maps Eq. 1
into a homogeneous partial differential equation that is easily
amenable to a general solution. We define the modified num-
ber function gðr; tÞ as

Nðr; tÞ5 1

gðrÞ gðr; tÞ1
1

gðrÞ

ðr

0

hðr0Þdr0: (2)

Substitution of Eq. 2 into Eq. 1 yields the following
homogeneous advection equation for gðr; tÞ

@g
@t

1gðrÞ @g
@r

50; (3)

where we used the following identities to arrive at Eq. 3

@N

@t
5

1

gðrÞ
@g
@t

;
@gðrÞN
@r

5
@g
@r

1hðrÞ: (4)

The initial condition for g may be easily deduced from
Eq. 2 by setting t 5 0. This operation gives

g0ðrÞ � gðr; 0Þ5gðrÞN0ðrÞ2
ðr

0

hðr0Þdr0: (5)

Equation 3 is a first order, homogeneous, linear advection
equation that can be readily solved using the method of
characteristics.

Solution

The solution to Eq. 3 may be obtained by parametrizing g
as follows. Let s denote the parametric variable for the char-
acteristic curves and k designates the initial point from
which the characteristic curves evolve. This corresponds to
the internal coordinate r such that rðs50Þ5k. Then, the total
derivative of g along the characteristics may be written as

dg
ds

5
@g
@t

dt

ds
1
@g
@r

dr

ds
(6)

The right-hand-side of Eq. 6 has the same form as Eq. 3.
In fact, these equations are made equal by setting

dt

ds
51 að Þ; dr

ds
5gðrÞ bð Þ; dg

ds
50 cð Þ: (7)

Finally, we choose tðs50Þ50. At the outset, the initial
conditions in the characteristic space correspond to a para-
metric curve C t050; k; s50; g0 kð Þ½ �.

The solution to Eq. 7 is straightforward. Starting with Eq.
7a, we recover s 5 t. Following through with Eq. 7b, it may
be integrated as follows

ðr

r0ðs50Þ

1

gðr0Þdr05

ðr

k

1

gðr0Þdr05

ðs

0

ds: (8)

This equation will help us determine the relation between
k, r, and t. Also note the use of the identity r s50ð Þ5k.
To make further headway, we define
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QðrÞ �
ð

1

gðrÞdr: (9)

Then, Eq. 8 is conveniently written as

QðrÞ2QðkÞ5s: (10)

At the outset, the initial characteristic point may be
obtained by solving

k5Q21 QðrÞ2tð Þ (11)

where Q21 is the inverse function of Q(r). Note that in Eq.
11, Q21 is evaluated at QðrÞ2t. An example is when
QðrÞ5ln r. This leads to Q21ðrÞ5er and k5Q21

ðln r2tÞ5re2t. A summary of initial characteristic points k
as well as Q and Q21 for some common growth laws is
shown in Table 1. For additional growth-rate models Dirksen
and Ring21 provide a comprehensive overview of particle
growth models for crystallization applications.

Lastly, the solution for g is found by integrating Eq. 7c.
This yields

gðk; sÞ5g0ðkÞ: (12)

With gðr; tÞ at hand, the number density function is
obtained from Eq. 2

Nðr; tÞ5 g½kðr; tÞ�
gðrÞ N0½kðr; tÞ�1

1

gðrÞ

ðr

kðr;tÞ
hðr0Þdr0: (13)

This equation stands as the general solution for Eq. 1. It
may be viewed as the superposition of two responses; the
first corresponding to the initial condition and the second
corresponding to particle birth and death. These are easily
identifiable in Eq. 13 and stand as the first and second terms
on the right-hand-side of that equation, respectively.

Systematic implementation

Here, we present a step-by-step approach to obtain solu-
tions for problems governed by Eq. 1. One may implement
the following, preferably by their order of appearance:

1. Solve for kðr; tÞ using Eq. 11.
2. Substitute kðr; tÞ into the second term on the right-

hand-side of Eq. 13.
3. Integrate the resulting expression.
4. Construct the general solution using Eq. 13 by making

the necessary substitutions.

Applications

By way of illustration, we present two applications for
using our proposed methodology. These sample problems,
while academic in nature, have been used in practice to ver-
ify our QMOM implementation both as a standalone code
and within a large scale, computational fluid dynamics, sim-
ulation tool.

Monosurface growth with Gaussian nucleation

For this example, we consider the monosurface growth of
particles in a well-mixed reactor with an initial condition
given by a lognormal distribution with l 5 0 and r51=2.
This may be written as

N0ðrÞ5lnNð0; 1
2
Þ5

ffiffiffi
2

p

r
1

r21
e22 ln r21ð Þ½ �2 r > 1;

0 r � 1:

8><
>: (14)

The nucleation rate is given by a narrow Gaussian distri-
bution centered at r 5 1 to mimic the behavior of constant
particle birth at a given critical radius. This is given by

bðrÞ5 12ffiffiffi
p
p e2144 r21ð Þ2 ; 8 t > 0: (15)

This model may be used, for example, in analyzing the
precipitation of solids from a liquid solution. In practice, the
critical radius may change with supersaturation, nonetheless,
the current assumption of a fixed critical radius is a viable
leading order approximation.

Using the procedure outlined in the previous section one
arrives at the following solution for the number density function

Nðr; tÞ5

ffiffiffi
2

p

r
1

ðr2rt21Þðrt11Þ e
22 ln ðk21Þ½ �2 k > 1

0 otherwise

8><
>:

9>=
>;

1
1

r2
Erf 12ðr21Þ½ �2 1

r2
Erf 12 k21ð Þ½ �

(16)

where k5r=ðrt11Þ.
One can also deduce the steady-state behavior of the par-

ticles by taking the limit of Eq. 16 as t!1. This yields

NðrÞ5 1

r2
Erf 12ðr21Þ½ �1 1

r2
: (17)

The solution given in Eq. 16 is shown in Figure 1 at dif-
ferent dimensionless times. Starting with t 5 0 in Figure 1a,
the initial condition clearly shows the log-normal distribu-
tion. The effect of the narrow Gaussian nucleation is visible
in Figures 1b, c, and d with a spike in the number of par-
ticles at r 5 1, our chosen critical radius. Finally, the steady-
state solution is shown in Figure 1e where the nucleation
rate clearly dominates while the effect of the initial condition
is “washed-out” as the initial particles had ample time to
grow and advect along the particle-size dimension.

Bulk-diffusion growth with Gaussian nucleation

For this problem, we reconsider the conditions given in
the previous example with the exception of using bulk-
diffusion growth instead of monosurface growth. In this
case, the solution is easily obtained as

Nðr; tÞ5

ffiffiffi
2

p

r
r

r22k22t
e22 ln ðk21Þ½ �2 k > 1

0 otherwise

8><
>:

9>=
>;

1rErf 12ðr21Þ½ �2rErf 12 k21ð Þ½ �

(18)

where k5
ffiffiffiffiffiffiffiffiffiffiffiffi
r222t
p

.
Note, however, that due to the nature of the bulk-diffusion

growth coupled with a birth rate at a fixed critical radius, the

Table 1. A List of Common Growth Laws and Their

Corresponding Characteristics

Growth Law g(r) Q �
Ð

1=gðrÞdr Q21 k

Linear r ln r er re2t

Monosurface r2 2r21 r21 r
11rt

Bulk diffusion r21 1
2

r2 6
ffiffiffiffiffi
2r
p

6
ffiffiffiffiffiffiffiffiffiffiffiffi
r222t
p
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solution is valid so long as r2 � 2t. This will cause unrealistic
behavior when r <

ffiffiffiffi
2t
p

. In practice, the critical radius is a
function of time and additional system complexity resolves
this problem by virtue of additional physics incorporated into
the model. Nonetheless, it is interesting to look at the current
case within the allowable range. The solution is shown in Fig-
ure 2 with samples taken at t 5 0.25 and t 5 0.5, spanning the
time range allowed by the constraint r2 � 2t.

Generalization

One may generalize the transformation given in Eq. 2 to
multivariate PBEs provided that the growth rates are
assumed to be a function of their corresponding internal
coordinate only. In this case, the multivariate PBE for the
number density function may be written as

@Nðr; tÞ
@t

1
Xm

i51

@giðriÞNðr; tÞ
@ri

5hðrÞ; hðrÞ � bðrÞ2dðrÞ (19)

where, as before, N r; tð Þ is the number density function, ri

is the ith internal coordinate, r � ðr1; r2; � � � ; rmÞ is the inter-
nal coordinate vector, m is the number of internal coordi-
nates, giðriÞ is the growth rate of the ith internal coordinate,
and hðrÞ � bðrÞ2dðrÞ is a particle birth/death term that is
independent of Nðr; tÞ. In this case, the initial condition is
also prescribed by N0ðrÞ � N r; 0ð Þ.

Multidimensional transformation

The one-dimensional transformation is now generalized by
redefining the modified number density function gðr; tÞ as

Nðr; tÞ � 1

GðrÞ gðr; tÞ1
1

GðrÞ

ðs

0

G½rðs0Þ�h½rðs0Þ�ds0;

GðrÞ �
Ym
i51

giðriÞ;
(20)

Figure 1. Evolution of particles with monosurface growth and Gaussian nucleation taken at various dimensionless
times, t5 (a) 0, (b) 0.1, (c) 0.3, (d) 0.5, and (e) steady state.
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where s denotes the parametric variable for the characteristic
curves and k � ðk1; k2; � � � ; kmÞ designates the set of initial
points from which the characteristic curves evolve.

The second term on the right-hand-side of Eq. 20 is a par-
ticular solution of Eq. 19. This term must be integrated in
characteristic space first. The result is then mapped back into
the internal coordinate space by substituting ki � kðri; tÞ. To
show that this term is a particular solution of Eq. 19, we set

Nðr; tÞ � 1

GðrÞBðr; tÞ (21)

then, on substitution into Eq. 19, we recover the following
advection equation

@Bðr; tÞ
@t

1
Xm

i51

giðriÞ
@Bðr; tÞ
@ri

5GðrÞhðr; tÞ; Bðr; 0Þ50: (22)

Using the method of characterisitics, the solution of Eq.
22 is

Bðr; tÞ5
ðs

0

G½rðs0Þ; t�h½rðs0Þ�ds0: (23)

Given that Eq. 22 shares the same characteristics as Eq.
19, one concludes that the particular solution of Eq. 22 is
also a particular solution of Eq. 19.

Moving on, we substitute Eq. 20 into the general PBE and
recover a homogeneous version of Eq. 19 with the modified
number density g as the dependent variable. The resulting
equation may be written as

@gðr; tÞ
@t

1
Xm

i51

giðriÞ
@gðr; tÞ
@ri

50: (24)

The initial condition for g is inferred from Eq. 20 by set-
ting t 5 0. This gives

g0ðrÞ � gðr; 0Þ5GðrÞN0ðrÞ: (25)

As before, Eq. 24 can now be readily solved using the
method of characteristics.

Solution

Let s denote the parametric variable for the characteristic
curves and k � ðk1; k2; � � � ; kmÞ designate the set of initial
points from which the characteristic curves evolve. These
correspond to the m internal coordinates ðr1; r2; � � � ; rmÞ such
that riðs50Þ5ki. Finally, we set tðs50Þ50. Starting on a
curve C t0; k; s50; g0 kð Þ½ �, the characteristic equations are
given by

dt

ds
51 að Þ; dri

ds
5giðriÞ bð Þ; dg

ds
50 cð Þ: (26)

These equations are now solved as follows. Starting with
Eq. 26a, we have s 5 t. Integration of Eq. 26b yieldsðri

riðk;s50Þ

1

giðr0Þ
dr05

ðri

ki

1

giðr0Þ
dr05

ðs

0

ds: (27)

This equation dictates the relation between ki, ri, and t. In
a manner to similar to Eq. 9, one defines

QiðriÞ �
ð

1

giðriÞ
dri: (28)

Then, Eq. 27 is simplified to

QiðriÞ2QiðkiÞ5s: (29)

At the outset, the general solution for the characteristic
point associated with the ith internal coordinate is obtained
by solving

ki5Q21
i QiðriÞ2tð Þ (30)

where Q21
i is the inverse function of QiðriÞ.

An interesting relation for the characteristic points
emerges from Eq. 30. Let n � QiðriÞ2t, then, one can show
that

@ki

@t
52

dQ21
i

dn
að Þ; @ki

@ri
5

1

giðriÞ
dQ21

i

dn
bð Þ (31)

from which one can easily deduce the following transport
equation for ki

@ki

@t
1giðriÞ

@ki

@ri
50: (32)

Lastly, the solution for g is found by integrating Eq. 26c

gðk; sÞ5g0ðkÞ: (33)

With gðr; tÞ at hand, the general solution for the number
density function is obtained from Eq. 20

Nðr; tÞ5 GðkÞ
GðrÞN0ðkÞ1

1

GðrÞ

ðs

0

Gðk; s0Þhðk; s0Þds0: (34)

Systematic implementation

Here, we present a step-by-step approach to obtain the
solution for a particular problem governed by Eq. 19. One

Figure 2. Evolution of particles with bulk-diffusion growth and Gaussian nucleation taken at t5 (a) 0.25 and (b) 0.5.
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may implement the following, preferably by their order of
appearance,

1. Solve for k using Eq. 30.
2. With knowledge of k � kðr; sÞ, solve for r � rðk; sÞ.
3. Substitute r � rðk; sÞ into the particular solution – the

second term on the right-hand-side of Eq. 34.
4. Integrate the resulting expression in characteristic

space.
5. Substitute s 5 t and ki � kiðri; tÞ.
6. Construct the general solution from Eq. 34 by making

the necessary substitutions.

Example: Multivariate Monosurface and
Bulk-Diffusion Growth

For this example, we consider the evolution of particles
with two internal coordinates designated by r1 and r2. We
use monosurface growth for r1 and bulk-diffusion growth for
r2 to allow for interesting dynamics in the solution. The birth
rate is assumed to be zero. It is possible for different growth
mechanisms to operate separately on different internal coordi-
nates. Such a case occurs for example in CaCO3 precipitation
where four known polymorphs, namely, amorphous calcium
carbonate (ACC), Vaterite, Aragonite, and Calcite grow
according to different mechanisms as the supersaturation ratio
changes.22 The initial condition is given by a symmetric two-
dimensional normal distribution centered at ðr1; r2Þ5ð6; 6Þ to
avoid nonzero values in the negative domain

N0ðrÞ5
1ffiffiffiffiffiffi
2p
p exp 2

1

2
ðr126Þ22

1

2
ðr226Þ2

� �
: (35)

We are now ready to apply the steps outlined in the previ-
ous section. However, in the absence of a source term, only
the first step is needed. One is required to evaluate the char-
acteristic points and perform the necessary substitutions into
the initial condition. At the outset, the solution is given by

Nðr1; r2; tÞ5
1ffiffiffiffiffiffi
2p
p r2

ð11r1tÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
r2

222t
p e

21
2
ð r1

11r1 t26Þ221
2
ð
ffiffiffiffiffiffiffiffiffi
r2

2
22t

p
26Þ2

:

(36)

The time evolution of the distribution for this two-
dimensional case is shown in Figure 3 at t 5 0 and t 5 0.05
in dimensionless time. The effect of the different growth

rates is clearly visible in Figure 3b where the monosurface
growth term dominates in the evolution of the initial distri-
bution. This type of growth may be used, for example, to
model anisotropic crystal or aerosol growth where the inter-
nal coordinates may be chosen to correspond to different lat-
tice directions.

Green’s Functions

Green’s functions provide a very useful tool to obtain gen-
eral analytical solutions for nonhomogeneous, linear partial
differential equations (PDEs). The Green’s function for a
PDE represents its solution subject to arbitrarily located
point sources and initial conditions. Once the Green’s func-
tion is known, the solution to the PDE with analytic initial
or forcing functions is easily obtained via a convolution with
the Green’s function.

For completeness, we briefly present the Green’s functions
for the PBE presented in Eq. 19. This is achieved by split-
ting the problem into two; the first corresponds to the homo-
geneous PBE with a nonzero, point-type initial condition
while the second represents the contribution of particle birth
or death with a zero initial condition. These may be written
in mathematical form as

@Ehðr; t; r�Þ
@t

1
Xm

i51

@giðriÞEhðr; t; r�Þ
@ri

50; Ehðr; 0; r�Þ5dðr2r�Þ;

(37)

@Esðr; t; r�Þ
@t

1
Xm

i51

@giðriÞEsðr; t; r�Þ
@ri

5dðr2r�Þ; Esðr; 0; r�Þ50:

(38)

Here, Eh and Es correspond to the Green’s functions for
the homogeneous and nonhomogeneous problems, respec-
tively. Note that, r� � ðr�1 ; r�2; � � �Þ is an arbitrarily chosen
parameter that designates the location of the point source,
and dðr2r�Þ � dðr12r�1Þdðr22r�2Þ � � � dðrm2r�mÞ is the multi-
dimensional Dirac delta function centered at r� such thatð1

21
f ðr1; r2; � � � ; rmÞdðr2r�Þdr5f ðr�1; r�2 ; � � � ; r�mÞ: (39)

The solutions to Eqs. 37 and 38 are easily obtained by
using Eq. 20. They are given by

Figure 3. Evolution of particles with two internal coordinates growing according to monosurface and bulk-
diffusion laws, respectively.

Figures show distribution at t5 (a) 0 and (b) 0.05.

6 DOI 10.1002/aic Published on behalf of the AIChE 2015 Vol. 00, No. 00 AIChE Journal



Ehðr; t; r�Þ5 GðkÞ
GðrÞ dðk2r�Þ; (40)

Esðr; t; r�Þ5 1

GðrÞ

ðs

0

G½rðsÞ�d½rðsÞ2r��ds5

G½rðsÞ�
GðrÞ 0 � r� � s;

0 otherwise:

8><
>:

(41)

The general solution to the number density function N is
then constructed via the following convolutions

Nðr; tÞ5
ð1

21
Nðr; 0ÞEhðr; t; r�Þdr�1

ð1
21

hðrÞEsðr; t; r�Þdr�:

(42)

Upon substitution of Eh and Es, we recover the following
solution for N

Nðr; tÞ5 GðkÞ
GðrÞN0ðkÞ1

1

GðrÞ

ðs

0

Gðk; s0Þhðk; s0Þds0 (43)

which is identical to the general solution shown in Eq. 34.

Code Verification

The general solutions shown in Eqs. 13 and 34 may be
used for verification of quadrature and DQMOM codes as
well as other numerical techniques for the solution of PBEs.
Code verification is an important aspect of modern code
development and it is essential to have a robust and properly
benchmarked population balance module as part of any
larger-scale code. The process of code verification in this
case may be accomplished using the following approach:

1. Obtain an analytical solution for a hypothetical problem
such as the ones illustrated in this article.

2. If possible, obtain analytical solutions for the moments.
While this may not be realizable in general, the moments
may be calculated using numerical integration.

3. Compare results obtained from QMOM or DQMOM
numerical solutions to those obtained from the analytical
solution.

Here, we assumed that the order of accuracy in the discre-
tization process has been properly verified and one is con-
cerned with verification of the population balance physics.
For a detailed overview of code verification, the reader is
referred to the book by Oberkampf and Roy.23

Conclusions

We developed a novel transformation that maps the non-
homogeneous, multidimensional PBE into a simple advection
equation. This transformation targets those population bal-
ance models in which the growth rates depend on their cor-
responding internal coordinate and exclude aggregation,
breakage, and time-dependent birth and death rates. The pre-
sented approach allows for a systematic and straightforward
solution methodology for PBEs. While the method of charac-
teristics may be used to solve the PBE models considered in
this study, the algebraic complexity introduced by solving
the original equations becomes burdensome. Our suggested
framework allows for significant reduction in the algebraic
complexity associated with integrating the characteristic
equations, to the extent that new solutions may be obtained
with straightforward substitutions. This solution process was
summarized via a sequence of easy-to-implement steps and
was used to derive analytical solutions for three hypothetical

problems. In all cases, the solution was presented in closed
form and graphed at several times to illustrate its behavior.
For added verification, we derived the multidimensional
Green’s functions for our targeted PBEs and showed that
these match the solution obtained via direct integration of
the original problem. Finally, we gave an overview of how
the current solution framework may be used as an avenue
for code verification of numerical PBE solvers. While analyt-
ical solutions are usually limited to simple problems, it is
gratifying to add a new tool to our arsenal that may be used
for academic purposes as well as for analyzing limiting sys-
tem behavior in practical applications. Our transformation
provides a utility to learn and apply population balances
with minimal effort so that its use encourages focusing on
population physics rather than the mathemtical complexity
associated with their solution.

Sample Mathematica Code

The following Mathematica code may be used to obtain
analytical solutions for the one-dimensional PBE with user-
specified growth, birth, and death rates.

(* USEFUL FUNCTIONS *)
gaussian[a_, x_]52/(a Sqrt[Pi]) Exp[-x^2/
a^2];
(* USER INPUT *)
N0[x_]:5 PDF[LogNormalDistribution[0, 1/
2], x - 1];
Growth[x_]:5 x^2;
Birth[x_]:5 gaussian[1/12, x - 1];
Death[x_]:5 0.01*gaussian[1/12, x - 2];

(* —————————————————————————————————————*)
(* MAIN CODE *)

(* COMPUTE CHARACTERISTIC *)
Q[x_]:5 Integrate[1/Growth[x], x];
l[x_, t_]5l1 /. Solve[Q[x] - t - Q[l1] 55 0,
l1][[1]][[1]];

(* COMPUTE INDEFINITE INTEGRALS OF GROWTH,
BIRTH, AND DEATH *)
IntGrowth[x_]5Integrate[Growth[x], x];
IntBirth[x_]5Integrate[Birth[x], x];
IntDeath[x_]5Integrate[Death[x], x];

(* COMPUTE RESPONSE TO BIRTH/DEATH *)
RHS[x_, t_]51/Growth[x] (IntBirth[x]
- IntBirth[l[x, t]] - IntDeath[x]1

IntDeath[l[x, t]]);

(* COMPUTE TOTAL SOLUTION *)
ND[r_, t_]:5 Growth[l[r, t]]/Growth[r]
N0[l[r, t]]1RHS[r,t];

(* END MAIN CODE *)
(* —————————————————————————————————————*)

(* EXAMPLE ANIMATION PLOT *)
Animate[Plot[{ND[x, t]}, {x, 0, 10},

PlotRange -> {Full, {0, nMax}}, Filling ->
Axis,
PlotPoints -> 100], {t, 0, 1}, {nMax, 1.75,
3, 0.0001},

AnimationRunning -> False]
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