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Kelvin’s minimum energy theorem predicts that the irrotational motion of a homogenously
incompressible fluid in a simply connected region will carry less kinetic energy than any other
profile that shares the same normal velocity conditions on the domain’s boundary. In this work,
Kelvin’s analysis is extended to regions with open boundaries on which the normal velocity
requirements are relaxed. Given the ubiquity of practical configurations in which open regions
arise, it may be argued that the longstanding question of whether Kelvin’s theorem will continue
to hold remains of fundamental interest. In reconstructing Kelvin’s proof, we find it useful to
denote a Kelvin surface as a boundary along which the net normal rotational velocity vanishes.
The net rotational velocity refers to the difference between the generally rotational mean flow and
the corresponding potential motion. Along similar lines, the term open is used to define a boundary
along which Kelvin’s velocity requirement is not fulfilled. After some analysis, two criteria are
obtained, one being sufficient but not necessary, that ensure the validity of Kelvin’s theorem. Both
require the evaluation of a simple surface integral over the open boundary. Specific cases are then
considered to illustrate the applicability of these criteria and test their usefulness. These include
a variety of classic problems involving Poiseuille flow in a duct, Taylor flow in a porous channel,
Taylor-Culick flow in a porous cylinder, and bidirectional helical flows of both complex lamellar
and Beltramian types that may occur in a cylindrical chamber.

Nomenclature

n = outward pointing normal unit vector
r = radial coordinate (cylindrical)
S = surface bounding volume of fluid
SK = Kelvin surface
So = open surface
T = specific kinetic energy of rotational motion
T̄ = specific kinetic energy of irrotational motion
u = velocity field
ū = irrotational velocity field
ũ = vortical component of motion, u − ū
V = volume of fluid
x, z = axial coordinate (planar and cylindrical)
y = normal/transverse coordinate (planar)

Greek Symbols
β = radial position of the mantle inside a cyclone
φ = velocity potential
ψ = stream function
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I. Introduction

Kelvin’s theorems occupy a central role in understanding the motion of ideal fluids as they help to
establish basic connections between purely irrotational velocity potentials and highly rotational fields.

Being relevant to both classical and quantum fluids, they continue to receive attention in various fundamental
studies such as those pertaining to turbulence1,2 and aerodynamic lift.3 Other interesting applications
include a generalization of the minimum energy theorem to equivorticity flows4 and the use of variational
theory to find the conditions for minimizing the kinetic energy of vortex motions.5 Of the many rich
contributions attributed to Kelvin, the present work focuses on the minimum energy theorem. Devised
in 1849, this theorem states that the irrotational motion ū of an incompressible fluid in a simply connected
region contains less kinetic energy than any other motion u with the same normal velocity at its boundary,
ū · n = u · n.6 The additional caveat is that, for a fluid extending to infinity, the theorem requires a vanishing
normal velocity at the far-field boundary.7,8

Several direct consequences may be deduced from Kelvin’s theorem. First, it precludes the onset of
irrotational motion in a simply connected, non-deformable region with rigid walls that nullify the potential
velocity at all points on the boundary. Such a scenario is consistent with a system at rest or one with no
kinetic energy. Second, for a non-deformable region with fixed rigid walls, no irrotational motion may be
sustained when the velocity at infinity vanishes. Third, when the velocity at infinity is either null or uniform,
a unique irrotational solution may be associated with a given motion of the internal boundary.9 From this
perspective, we define a Kelvin boundary as a surface on which the normal velocity requirement associated
with Kelvin’s theorem is satisfied, i.e. (ū − u) · n = 0. For any other boundary, the term ‘open’ is used. In
this work, we find that Kelvin’s minimum energy theorem continues to hold in regions with open boundaries
provided that a simple criterion is met. This criterion will be rigourously derived and then thoroughly tested
using several classic flow configurations with open boundaries.

II. Basic Analysis

In what follows, we assume that the irrotational motion can be uniquely determined given the necessary
constraints. We also assume that the rotational velocity fields are incompressible and regular.

Theorem. The irrotational motion ū of a steady homogenous incompressible fluid in a simply connected
fluid regionV contains less kinetic energy than any other motion u with or without the same normal velocity
at its boundary provided that the following sufficient condition is met

To =

"
So

φ ũ · ndS ≥ 0 (1)

where ũ = u − ū defines the purely rotational component of the motion whereas φ, n, and So denote the
velocity potential, normal unit vector, and open surface, respectively.

Proof. With ū = ∇φ being a steady, single-valued velocity potential of a homogeneously incompressible
fluid occupying a simply connected volume of fluid V, then ũ = u − ū refers to the (net) rotational
contribution and difference between the velocity of another (rotational) motion satisfying continuity and
the potential solution ū (see Fig. 1). Note that the rotational motion can be either inviscid or viscous. These
fields are incompressible and so, by virtue of mass conservation, one may put

∇ · ū = ∇ · u = ∇ · ũ = 0. (2)
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Pursuant to Kelvin’s argument, u and ū must exhibit the same normal velocity along the boundary of V or
else vanish, thus defining a Kelvin surface. Using S to denote a surface that envelops the fluid, one may
seek a more general case by decomposing S into

S = SK + So (3)

where SK and So represent the Kelvin and open surfaces, respectively. Velocity constraints at the boundaries
include SK : ũ · n = (u − ∇φ) · n = 0

So : ũ · n , u · n , 0.
(4)

It may be realized that, as a consequence of the surface decomposition, the mass flowrates of both irrotational
and rotational motions must be equal at the open surface. This can be seen by first putting"

S

ũ · ndS =

"
SK

ũ · ndS +

"
So

ũ · ndS = 0 (5)

then, recalling that ũ · n = 0 on SK, we have"
So

ũ · ndS = 0 (6)

which leaves us with the equal flux requirement,"
So

u · ndS =

"
So

ū · ndS. (7)

Clearly, Eq. (7) is a statement of conservation of mass that links the incompressible rotational and
irrotational motions. Subsequently, when the boundary conditions arising in a given problem are not
sufficient for securing a unique velocity potential, Eq. (7) may be used to achieve closure. The mass
equiflux requirement is also consistent with the concept of identifying and comparing fluid motions that
exhibit different kinetic energies under similar conditions at the boundaries.

Kelvin
surface

n
open

closed

u n 0.~
=

u n 0.~ =

u n
0

.~ =

Figure 1. Volume of fluid showing both Kelvin and open surfaces with corresponding velocity requirements at the
boundaries.
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For steady, homogeneous, incompressible motion, we choose T and T̄ to represent the specific kinetic
energies associated with u and ū, respectively. Subsequently, the energy contribution due to rotationality
may be calculated from

∆T = T − T̄ = 1
2

$
V

(
u2 − ū2

)
dV = 1

2

$
V

[
(u − ū)2 + 2(u − ū) · ū

]
dV. (8)

Consequently, using ũ · ∇φ = ∇ · (φ ũ) − φ∇ · ũ = ∇ · (φũ) in conjunction with the divergence theorem, Eq.
(8) becomes

∆T = T̃ + TS;


T̃ = 1

2

$
V

ũ2 dV

TS =

"
S

φ ũ · ndS.
(9)

In constructing Kelvin’s theorem, the purely rotational motion vanishes on all boundaries, thus yielding
ũ · n = 0 on S. This permits setting TS = 0 in Eq. (9) and deducing that ∆T ≥ 0 with T̃ ≥ 0 for
any rotational field. It can therefore be seen that taking S to be a Kelvin surface ensures that the energy
associated with the potential motion remains a minimum. However, in the presence of an open boundary, it
is possible for TS , 0 granted that

TS =

"
SK

φ ũ · ndS +

"
So

φ ũ · ndS =

"
So

φ ũ · ndS. (10)

The rotational energy increment becomes

∆T = 1
2

$
V

ũ2 dV +

"
So

φ ũ · ndS. (11)

Clearly, in order for ∆T ≥ 0, it is necessary and sufficient to impose

1
2

$
V

ũ2 dV +

"
So

φ ũ · ndS ≥ 0. (12)

Recalling that the first term in Eq. (12) is always positive, it is sufficient although not necessary to show that

To ≡

"
So

φ ũ · ndS ≥ 0. (13)

Kelvin’s theorem may thus be extended to the flow of homogeneously incompressible fluids in regions with
open boundaries when either of the two above conditions is fulfilled. These may be implemented in the
following rational order 

To =

"
So

φ ũ · ndS ≥ 0 (a)

else, if To < 0,

To > −
1
2

$
V

ũ2 dV (b).

(14)

�

Evidently, it is simpler to evaluate Eq. (14a), being a local surface integral, than Eq. (14b), which involves
a triple integral of the net rotational velocity over the entire fluid domain.

Before leaving this topic, it may be instructive to note that the criteria established in Eq. (14) were first
considered by the authors in a study that was centered on the Lagrangian optimization of wall-injected flows
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in porous ducts.10 Therein, the authors applied a variational principle for the purpose of identifying classes
of solutions for porous duct flows with varying energy signatures and vorticity distributions. In the process,
Kelvin’s extended theorem was invoked to confirm the irrotational nature of the minimum energy profile
predicted by the optimization procedure. Here, the theorem is reconstructed in the light of original new
applications and essential concepts such as: (a) the character of the domain boundary decomposition, (b)
the specification of a Kelvin surface in Eq. (3) for denoting the closed section of the boundary, and (c) the
identification of the mass equiflux condition in Eq. (7) as a basic requirement for achieving closure in the
determination of unique velocity potentials (e.g. in the treatment of problems lacking sufficient boundary
conditions on the irrotational motion). Finally, the present investigation will lead to the development of
several potential flow representations for a rich class of helical flows11–16 that will be described below.

III. Discussion

For a multi-valued potential such as that corresponding to the flow in multiply connected regions, the
theorem no longer holds unless one selects the particular irrotational motion that bears the least kinetic
energy among all potential solutions. Alternatively, if one defines a velocity potential as the difference
between two possible potential solutions having the same cyclic constant (φ = φ0 − φ1), then the theorem
will be true owing to the resulting potential becoming unique.8

Since velocity potentials are defined up to an additive constant K, its effect on Eq. (14a) must be carefully
examined. In this case, we replace φ by (φ + K) in Eq. (14a) and recover

To =

"
So

(φ + K) ũ · ndS =

"
So

φ ũ · ndS ≥ 0 (15)

where the divergence-free property of the net rotational motion is employed by virtue of"
S

ũ · ndS =

"
SK

ũ · ndS +

"
So

ũ · ndS =

"
So

ũ · ndS = 0. (16)

It can thus be seen that, for single-valued velocity potentials, the extended Kelvin criterion is not affected by
the addition of an arbitrary constant to the potential.

IV. Applications

A wide array of flow problems exist on which the criteria given by Eq. (14) may be tested. Of those, we
select the Poiseuille flow in a duct, the Taylor flow in a porous channel, the Taylor-Culick flow in a porous
cylinder, and the bidirectional vortex in a confined cylinder with both complex lamellar and Beltramian
motions, respectively.

A. Poiseuille Flow in Ducts of Arbitrary Cross-Sections

For this classical problem, the velocity potential corresponds to that of a uniform planar flow such
that the velocity remains parallel to the duct walls. Being axially independent, the potential and rotational
velocity fields return the same difference at any cross-section of the duct i.e. ũ , ũ(z). Then, having single
inlets and outlets as open boundaries, we easily deduce that

To =

"
So

φũ · ndS =

"
Sinlet

φũ · ndS −
"
Soutlet

φũ · ndS = 0 (17)

which clearly meets the lower limit of the inequality given by Eq. (14)a. By way of illustration, we select the
parabolic Hagen-Poiseuille flow in a circular pipe of unit radius. This profile exhibits the known potential
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and rotational fields, specifically

φ = Uavz = 1
2 z; ū = 1

2 ez; u = (1 − r2)ez (18)

where z refers to the axial position along the pipe. The constant Uav in the velocity potential is obtained by
applying mass conservation at an arbitrary cross-section of the pipe. The net rotational field is then obtained
by taking the difference between the rotational and irrotational fields,

ũ = ( 1
2 − r2)ez. (19)

Since both the velocity potential and net rotational motion are independent of the axial location z, the inlet
and outlet sections can be arbitrarily chosen. At the outset, evaluating Eq. (14a), we recover

To =

"
Sinlet

φ ũ · ndS −
"
Soutlet

φ ũ · ndS

= 2π
∫ 1

0

(
1
2 − r2

)
r dr − 2π

∫ 1

0

(
1
2 − r2

)
r dr = 0. (20)

Other Poiseuille-like profiles in ducts of various cross-sections may be obtained from Batchelor,8 White,17

or Shivamoggi.18

B. Taylor Flow in a Porous Channel

The Taylor profile refers to the inviscid rotational flow in a uniformly porous channel with a non-
injecting headwall.19,20 First studied by Taylor,21 the geometry consists of a channel that is horizontally
bounded by 0 ≤ x ≤ L and vertically by 0 ≤ y ≤ 1, as shown in Fig. 2. Being rotational, Taylor’s
solution satisfies the no-slip boundary condition at the injecting sidewall. In the propulsion and aeroacoustic
communities, this basic model is used to study rocket internal mean flow stability,22–24 particle-mean flow
interactions,25 compressibility effects,26 and propellant grain regression effects.27 It is defined by21

ψ = x sin( 1
2πy); u = 1

2πx cos
(

1
2πy

)
ex − sin

(
1
2πy

)
ey. (21)

The potential function for this profile stems from a power law conformal map with an exponent of 2; as
such, we have

φ + iψ = 1
2 z2; z = x + iy. (22)

y
x

Figure 2. Streamlines corresponding to Taylor’s flow in a porous channel of unit height and length L.

6
American Institute of Aeronautics and Astronautics



The corresponding velocity potential, streamfunction, and velocity field may be expressed as

φ = 1
2 (x2 − y2); ψ = xy; ū = x ex − y ey. (23)

This irrotational solution may also be obtained by solving ∇2ψ = 0 with a suitable set of boundary
conditions, namely,

u(0, y) =
∂ψ(0, y)
∂y

= 0 impermeable headwall (a)

v(x, 1) = −
∂ψ(x, 1)
∂x

= −1 constant sidewall injection (b)

v(x, 0) = −
∂φ(1, z)
∂r

= 0 no flow across the symmetry plane (c).

(24)

With ū at hand, the net rotational component may be retrieved viz.

ũ = u − ū =
[

1
2πx cos

(
1
2πy

)
− x

]
ex +

[
y − sin

(
1
2πy

)]
ey. (25)

For the fluid domain depicted in Fig. 2, the exit plane at z = L constitutes the only open boundary.
Implementation of Eq. (14)a renders

To =

"
So

φũ · ndS =

"
So

(φũx)|x=L dS

=

∫ 1

0

1
2

(
L2 − y2

) [
1
2πL cos

(
1
2πy

)
− L

]
dy =

(
4π−2 − 1

3

)
L > 0. (26)

Clearly, the positive outcome ensures the validity of Kelvin’s theorem. On this subject, it may be instructive
to note that, in separate work, the authors28 have applied the Lagrangian optimization principle and obtained
an independent confirmation of the irrotational motion being indeed the least kinetic energy bearer among
other possible flow configurations. The applicability of Kelvin’s framework to an open region can hence be
corroborated through the use of a fundamental principle in variational calculus.

C. Taylor-Culick Flow in a Porous Pipe

Another application of Eq. (14)a consists of the axisymmetric flow analog of Taylor’s planar problem.
The setting corresponds to the inviscid gaseous motion in a semi-infinite porous cylinder with an impervious
headwall and uniformly distributed sidewall mass injection (see Fig. 3). This particular profile has been
chosen in previous work to represent the bulk flow of an internal burning, cylindrically-shaped, solid rocket
motor.29 Chronologically, McClure, Cantrell and Hart30 stand among the first to have used its potential
mean flow in their investigative studies of the aeroacoustic field in solid rocket motors. In the spirit of
improvement, their model was superseded, shortly thereafter, by Culick’s rotational flow counterpart. The
latter, often called Taylor-Culick’s,31 is known for being inherently consistent with the no-slip requirement
at the sidewall. This may be attributed to its boundary conditions that compel the fluid to enter the chamber
perpendicularly to the injecting surface.

To reproduce the irrotational solution, Taylor-Culick’s velocity potential may be returned from the
Laplacian of φ over the domain bracketed by 0 ≤ r ≤ 1 and 0 ≤ z ≤ L. For the sake of simplicity, the
sidewall injection velocity and the radius of the chamber may be assigned unit values. The constraints that
accompany the model reduce to

∂φ(0, z)
∂r

= 0 (a);
∂φ(r, 0)
∂z

= 0 (b);
∂φ(1, z)
∂r

= −1 (c). (27)
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At this point, the axisymmetric velocity potential may be obtained straightforwardly. We get

φ = − 1
2 r2 + z2 or ū = −rer + 2zez. (28)

Alternatively, one may solve for the streamfunction by foreseeing that ∇ × u = 0, or

∂2ψ

∂r2 −
1
r
∂ψ

∂r
+
∂2ψ

∂z2 = 0 (29)

where separation of variables may be readily implemented in conjunction with mass conservation to
determine the constants of integration. The equivalent route yields the conjugate streamfunction

ψ = r2z. (30)

As for the rotational solution, it may be retrieved from the vorticity transport equation assuming a linear
relation between ωθ and ψ.29,31 One obtains

ψ = z sin( 1
2πr2) or u = −r−1 sin( 1

2πr2)er + πz cos( 1
2πr2)ez. (31)

The corresponding rotational component may be expressed as

ũ = u − ū =
[
−r−1 sin( 1

2πr2) + r
]

er +
[
πz cos( 1

2πr2) − 2z
]

ez. (32)

When evaluated on the boundary, Eq. (32) vanishes everywhere except in the exit plane at z = L, where an
open boundary is present. To verify that the potential solution given by Eq. (28) carries the least kinetic
energy, we examine the first criterion in Eq. (14), namely,

To =

"
So

φ ũ · ndS =

"
So

(φ ũz)z=L dS

= 2πL
∫ 1

0
(L2 − 1

2 r2)
[
π cos( 1

2πr2) − 2
]

r dr. (33)

Upon evaluation, Eq. (33) yields To =
(
2 − 1

2π
)

L ≥ 0, thus ensuring T̄ ≤ T . The authors have also verified
that the potential solution indeed corresponds to the motion with least kinetic energy using a variational
procedure based on Lagrangian multipliers.32

r
z

Figure 3. Streamlines corresponding to Culick’s rotational profile for flow in a porous cylinder of unit radius and length L.

8
American Institute of Aeronautics and Astronautics



D. Bidirectional Vortex in a Confined Cylinder

The confined bidirectional vortex is illustrated schematically in Fig. 4. It pertains to the bipolar swirling
motion of an incompressible fluid in a right-cylindrical chamber of height L and unit radius. This problem
has been extensively investigated by Majdalani and co-workers.11–16 A characteristic of the bidirectional
vortex is the presence of a rotating fluid interface known as the mantle. This so-called spinning wheel
separates the outer and inner vortex regions at a radius of r = β.11,12 In this vein, the mantle position β

denotes the locus of points along which the axial flow vanishes before switching spatial polarity.
The velocity potential for the bidirectional vortex can be determined by first splitting the domain into

two regions. An inner cylinder bounded by the mantle (0 ≤ r < β) and an outer annulus extending from the
mantle to the sidewall (β < r ≤ 1). Corresponding boundary conditions consist of

0 ≤ r < β :

ūz(r, 0) = 0
ūr(0, z) = 0

β < r ≤ 1 :

ūz(r, 0) = 0
ūr(1, z) = 0

; ūθ(1, z) = 1. (34)

Then, by using φ = f (r) + g(θ) + h(z) in ∇2φ = 0, one arrives at

φ =

− 1
2 a0r2 + θ + a0z2; 0 ≤ r < β
−b0( 1

2 r2 − ln r) + θ + b0z2; β < r ≤ 1
(35)

and so

ū =

−a0rer + r−1eθ + 2a0zez; 0 ≤ r < β
−b0(r − r−1)er + r−1eθ + 2b0zez; β < r ≤ 1.

(36)

The constants a0 and b0 are related by matching the inner and outer radial velocities at the mantle viz

b0 =
β2a0

β2 − 1
. (37)

While the mantle location is prescribed by the rotational motion, a0 must be evaluated, by virtue of Eq. (7),
from mass conservation at the open bounday:∫ β

0
ūz(r, L)rdr =

∫ β

0
uz(r, L)rdr. (38)

In some rotational models of bidirectional vortex motions, the radial velocity is axially invariant to the extent
of permitting the use of an equivalent approach for determining a0. This can be accomplished by setting
ūr(β) = ur(β) or a0 = −β−1ur(β).

r
z

β

Figure 4. Schematic and coordinate system for a helical, bidirectional vortex motion in a unit- right-cylindrical chamber of
length L.
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At this point, Kelvin’s confirmatory criteria will be applied to three models of the confined bidirectional
vortex, a family of swirl dominated motions comprising three components of velocity.

1. Complex Lamellar Solution

Vyas and Majdalani16 introduced an inviscid rotational model of the complex lamellar type for which
u · (∇ × u) = 0. Their model is summarized by

u = −r−1 sin(πr2)er + r−1eθ + 2πz cos(πr2)ez (39)

where, for simplicity, we have set κ = 1 in their original solution. The mantle, in this case, is located at
β = 1/

√
2 ' 0.707. In view of Eq. (36), the net rotational component of motion may be segregated into

ũ =


[
2r − r−1 sin(πr2)

]
er +

[
2πz cos(πr2) − 4z

]
ez; 0 ≤ r <

√
2/2

−
[
r−1 sin(πr2) +

(
2r − 2r−1

)]
er +

[
2πz cos(πr2) + 4z

]
ez;

√
2/2 < r ≤ 1.

(40)

Recalling that the open boundary stands at z = L, Eq. (14)a may be decomposed into two complementary

integrals that can be evaluated simultaneously. Using Si (θ) =

∫ θ

0
t−1 sin t dt to denote the sine integral

function, this effort leads to

To =

"
So

φ ũ · ndS =

"
So

(φ ũz)|z=L dS

=

∫ 2π

0

∫ √
2/2

0

(
2L2 + θ − r2

) [
2πL cos(πr2) − 4L

]
r dr dθ

+

∫ 2π

0

∫ 1

√
2/2

(
r2 − 2 ln r + θ − 2L2

) [
2πL cos(πr2) + 4L

]
r dr dθ (41)

and so
To = 2

[
1 − ln 4 + Si(π) − Si

(
1
2π

)]
πL ' 0.596L > 0. (42)

This result confirms that the complex lamellar solution is conformant to Kelvin’s sufficient condition given
by Eq. (14)a.

2. Beltramian Solutions

Two additional solutions of the confined bidirectional vortex have been recently reported in work by
Majdalani.11 These give rise to both Trkalian, with ∇ × u = ξu, ξ = const, and Beltramian motions, with
∇ × u = ξu, ξ = ξ(x), x being the position vector. These can be employed to substantiate Kelvin’s criteria
for an open region. In the interest of brevity, only the Beltramian profiles will be considered here. For
this particular family, the mantle location shifts to β ' 0.627612, a change that affects the breakpoint in
the piecewise representation of the potential field in Eqs. (35–36). As for the streamfunctions, they are
compactly given by Majdalani11 who puts them in the form

ψ =

crzJ1(λ0r); type I
cLr sin( 1

2πz/L)J1(λ0r); type II
(43)

where J1(x) stays for the Bessel function of the first kind, λ0 ' 3.83171 is the first root of J1(x), and
c = β−1J−1

1 (λ0β) ' 3.069148. While the radial and axial components of velocity are easily obtained from
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Eq. (43), the tangential velocity profiles are given by

uθ =


r−1

√
1 + λ2

0ψ
2; type I

r−1
√

1 + (λ2
0L2 + 1

4π
2)ψ2L−1; type II.

(44)

The irrotational motion is determined from Eq. (36) by setting a0 = 2.53874 and b0 = −1.64988 for both
type I and type II solutions. In this case, evaluation of the sufficient criterion yields

To ' 5.163 × 10−5L3 + 0.8L ≥ 0; type I–II. (45)

Note that while the kinetic energy of the irrotational model is logarithmically divergent due to the presence
of an irrotational vortex, it is no less singular than any of the rotational models considered. In fact, the
divergent terms will cancel identically when the difference in their kinetic energies is carried out.

So while Kelvin’s classic theorem remains unequivocally true in simply connected regions, the examples
discussed heretofore lend support to its continued applicability to fluid domains with open regions. It is
hoped that the criteria stated above will open up new lines of research inquiry, specifically ones that will
either produce supplementary verifications and proofs or, perhaps, exceptions and exclusions that we may
have overlooked.

V. Conclusions

The present analysis seeks to answer a long-standing question addressing the viability of Kelvin’s
theorem in regions with open boundaries. It seems that such a fundamental question has been judiciously
avoided in textbooks on the subject, albeit relevant to a recurring problem in classical aerodynamics. Our
work suggests that Kelvin’s minimum energy statement is connected to the sign of an integral which, in
turn, depends on the rotational flux over the open boundary and the local potential function. This no longer
requires a vanishing or uniform velocity field at infinity for the theorem to stand. From this perspective, the
ability of the present analysis to account for irregular velocity distributions at the fluid boundaries grants
Kelvin’s theorem broader applicability to geometrically complex regions and those with arbitrary velocity
distributions.

Furthermore, our analysis identifies a criterion that can be invoked to secure unique velocity potentials.
This additional condition ensures the equivalence of mass flowrates between irrotational motions and those
with different vorticity distributions at the open boundary. By applying this principle to helical vortex
motions, we are able to derive unique velocity potentials for the given boundary conditions. These motions
are not only of great significance to flow separation industries, but also to propulsion, meteorology, and
ocean circulation.

Finally, for all of the applications provided in this manuscript, the sufficient criterion given by Eq. (14a)
held true. While the authors hope to address the universality of this condition in a future study, it represents
a simple constraint to check for the minimum energy bearing motion. It is hoped that the work initiated here
will be expanded to other restricted theorems, compressible fluid motions, and more elaborate physical and
geometric settings.
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