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In a recent study, Taylor’s incompressible model for a porous cylinder was generalized to 
account for energy-triggered solutions with arbitrary headwall injection (Majdalani and 
Saad, “Energy Steepened States of the Taylor-Culick Profile,” AIAA Paper 2007-5797, July 
2007). In this sequel, we extend the analysis to the planar configuration while incorporating 
arbitrary headwall injection. Using a porous channel to model a slab hybrid chamber, we 
introduce Lagrangian multipliers and optimize the total kinetic energy of the system.  The 
Lagrangian optimization principle yields mean flow solutions that depend on the chamber 
aspect ratio as well as the headwall injection profile and a quantum-like energy power index, 
q.  Subsequently, the resulting solutions are classified according to their energy content with 
reference to Taylor’s basic solution.  Physically, what we dub the Type I families of solutions 
exhibit steeper profiles and energy levels that are lower than Taylor’s.  Conversely, the Type 
II families exhibit smoother profiles with energy levels that exceed Taylor’s.  Both types 
approach Taylor’s expression as their energy power index q is increased. 

Nomenclature 
a  = chamber half height 

VE
E

 = total volumetric kinetic energy 
 = kinetic energy density,  3/VE L

u )/  wU = normalized velocity ( u ,v
U (0,0)u

/U
  = headwall injection velocity, c

c
U
u  = normalized injection velocity,  c wU

 = sidewall injection velocity, ( , )x av−w  
x ,   = normalized axial and vertical coordinates, /x a , /y a  y
η  = action variable, 1

2( )n yπ+  
ν  = kinematic viscosity, /μ ρ  
ρ  = density 
 
Symbols 
c  = centerline property 
h  = headwall property 
w  = sidewall property 

 = overbars denote dimensional variables 
−  = a superscripted minus denotes Type I solutions 
+  = a superscripted plus denotes Type II solutions 

I. Introduction 
AYLOR’s solution for an injection-driven porous channel was derived under the assumptions of steady, 
inviscid, incompressible, rotational and pseudo-viscous conditions.1  Despite its inviscid origin, its streamlines T 
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observed the no slip requirement along the porous sidewalls.2  In recent work, Majdalani and Saad3 presented a 
closed-form rotational solution for the axisymmetric Taylor-Culick profile with arbitrary headwall injection as well 
as for the porous channel case with arbitrary injection (Saad and Majdalani4).  Their models were suitable for 
describing the bulk fluid motion in cylindrical and slab rocket chambers with either solid or hybrid grains.  They 
also extended the Taylor-Culick flow by developing energy dependent approximations that could display either 
steeper or smoother velocity profiles.5  Their analysis suggested the possible establishment of a continuous spectrum 
of solutions each bearing a different kinetic energy signature (see Apte and Yang6,7).   

In this article, we follow similar lines and procure energy based solutions for the injection-driven porous 
channel.  In the process, we construct approximate solutions that satisfy the problem’s constraints while either 
minimizing or maximizing the system’s energy.  After bracketing the limiting solutions for several headwall 
injection profiles, we compare and classify two distinct families of solutions (Types I and II) depending on their 
energy content.  In all of the cases considered, simple approximations are produced for sufficiently long chambers. 

Extending our analysis to the planar configuration serves two main objectives. Not only does it prescribe a new 
method of approximation for mean flow fields but also carries the advantage of providing an avenue for comparison 
with experimental and numerical profiles associated with slab burner grains in both hybrid and solid rocket 
chambers. These are becoming increasingly more common in propulsion related simulations.6-8  Finally, the reduced 
complexity of the Cartesian case provides a simple platform for delving into the physical mechanisms that are 
intrinsic to two-dimensional flows through porous channels. 

II. Mathematical Model 
 The slab motor can be modeled as a porous channel of length 0  and height .  We also permit the forward 
end to be porous while assuming an open aft end.  As shown in Fig. 1, 

L 2a
x  and y  represent the axial and normal 

coordinates, respectively. Note that the porous headwall permits the injection of a fluid at a user-defined velocity 
profile, ( )0u y .  Special cases of ( )0u y  include 

   0

const;              uniform
( ) ( ,0) cos( / 2 );       sinusoidal

[1 ( / ) ];        laminar and turbulent

c

c
m

c

U
u y u y U y a

U y a

π
⎧ =
⎪

= = ⎨
⎪ −⎩

 (1) 

Our solution domain extends from the headwall to the parallel, virtual nozzle attachment plane at the aft end.  
 At the headwall, an axial jet enters the chamber at a maximum centerline speed, cU .  This stream is then 
augmented by uniform mass addition along the porous sidewall.  In what follows, we seek to approximate other 
solutions that may exist besides Taylor’s basic relation. In particular, we hope to identify those particular solutions 
that require the least or most energy to excite. 

A. Equations 
 An inert flow may be assumed, prompted by the typically thin reactive zone above the grain surface. Following 
rote, the basic flow can be taken to be steady, inviscid, incompressible, rotational, and axisymmetric. Euler’s 
equations become 

   0u
x y

∂ ∂
+ =

∂ ∂
v  (2) 

   1u uu p
x y xρ

∂ ∂
+ = −

∂
∂ ∂ ∂

v  (3) 

   1 pu
x y yρ

∂ ∂
+ = −

∂
∂ ∂ ∂
v v
v  (4) 
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Figure 1. Simulated slab rocket as a porous channel with arbitrary headwall injection. 

B. Boundary Conditions 
 These are physically connected to 
  (a) axial symmetry and therefore no flow across the midsection plane; 
  (b) vanishing axial flow at the sidewall to secure the no slip boundary condition;  
  (c) uniform injection at the sidewall; and 
  (d) a user-prescribed injection pattern at the headwall. 
Mathematically, these particulars can be written as 

   0

(a)  ( , 0) 0 (no flow across midsection plane)
(b)  (0, ) ( ) (headwall injection profile)
(c)  ( , 1) (constant sidewall mass addition)
(d)  ( ,1) 0 (no slip)

w

x
u y U y

x U
u x

=⎧
⎪ =⎪
⎨ ± = −⎪
⎪ =⎩

v

v
 (5) 

C. Normalization 
 All variables and operators may be normalized using the following definitions: 

   2;  ;  ; ; ;
w ww

x y px y a p
a a aU UU

ψψ
ρ

= = ∇ = ∇ = = =
aΩΩ  (6) 

   0
0;  ; ;  ;  v

v c
c

w w w w

U U Luu u u
U U U U a

= = = = = 0  L  (7) 

Here (0, 0)cU u=  and ( , )wU x= −v a  designate the fluid injection velocities at the headwall and sidewall, 
respectively. For steady inviscid motion, the vorticity transport equation reduces to  
   0∇× × =u Ω ;  = ∇ ×Ω u  (8) 
Similarly, the dimensionless boundary conditions take the form 
    (9) 0(a)  ( , 0) 0; (b)  (0, ) ( ); (c)  ( ,1) 1; (d)  ( ,1) 0x u y u y x u x= = = −v v =
Due to symmetry at the midsection plane, we consider only half of the channel. 

D. Vorticity-Stream Function Decomposition 
 The Stokes stream function may be introduced through 
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   u
y
ψ∂

=
∂

      and      
x
ψ∂

= −
∂

v  (10) 

As usual,3,4 substitution into Eq. (8) requires 
   ( )zΩ=Ω F ψ=  (11) 
One then follows tradition1 and selects the simplest relation between  and Ω ,ψ  namely, 
   2Ω K ψ=  (12) 
Despite the non-uniqueness of this expression, it permits securing Eq. (8).  By inserting Eq. (12) into the vorticity 
equation, one eliminates Ω  and restores the PDE characteristic of this problem.  This is 
   2 2 0Kψ ψ∇ + =  (13) 
Its particular set of constraints comprise: 

   0
( ,0) ( ,1) (0, ) ( ,1)0   (a);  1   (b);  ( )  (c);  0   (d)x x y xu y
x x y y

ψ ψ ψ ψ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
=  (14) 

Equation (13) may be solved by separation of variables; one finds 
   ( , ) ( )[ cos( ) sin( )].x y x A Ky B Kyψ α β= + +  (15) 

III. Energy Based Solutions 

A. Solution by Eigenfunction Expansions 
 The application of the boundary conditions is carried out in the order in which they appear.  Starting with Eq. 
(14)a, we have 

   0

( ,0) cos( ) sin( ) 0y

x A Ky B Ky
x

ψ α α
=

∂
= +

∂
=  (16) 

or .   Without loss in generality, we set 0=A 1B =  and rewrite Eq. (14)b as 

   ( ,1) ( ) cos( ) 0x K x K
y
ψ α β∂

= + =
∂

 or cos( ) 0K =  (17) 

This condition is satisfied when 
   { }1

2( ) 0,1,2,3,...,nK n nπ= + ∀ ∈ ∞  (18) 
Using 1

2( )nK n π= +  enables us to sum over eigenfunctions to construct the total solution. Ignoring negative 
integers to avoid self-cancellation, one can put 

   ( )1
2( ) sinn n nx n yψ α β π⎡ ⎤= + +⎣ ⎦      or     ( )1

2
0

( , ) ( ) sinn n
n

x y x n yψ α β π
∞

=

⎡ ⎤= + +⎣ ⎦∑  (19) 

The headwall boundary condition may be satisfied by means of orthogonality; one recovers, for an injection profile 
( )0u y , the following compact form:  

   
1 1

0 20

4 ( ) cos[( ) ] d
(2 1)n u y n y y

n
β

π
=

+ ∫ π+  (20) 

When evaluated for several injection profiles, we obtain 

   

( )
( )

( )
( )

( ) ( )

( )
( )

( ) ( )

0

022

1
0 2

2
044

0; 0

1 8
;

2 1

2 ; 0 (0; 0); cos

1 64
; 1

2 1

n
c

c

n c
c

n
c

c

u y

u
u y u

n
u

n n u y u

u
u y u y

n

π
β

yπ
π

π

⎧ =
⎪

−⎪
=⎪

+⎪⎪= ⎨
= ∀ ≠ =⎪

⎪
⎪ −
⎪ = −
⎪ +⎩

 (21) 

The third condition becomes 

   ( )1
2

0
( ,1) sin 1n

n
x n

x
ψ α π

∞

=

∂ ⎡ ⎤= + =⎣ ⎦∂ ∑      or     
0
( 1) 1α

∞

=

− =∑ n
n

n
 (22) 
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Clearly, an infinite number of possibilities exist that would, in principle, satisfy Eq. (22), depending on the behavior 
of the sidewall injection sequence { }nα . 

B. Kinetic Energy Optimization 
One of the choices for { }nα  may be arrived at by optimizing the total kinetic energy in the chamber. The 

underlying principle projects that a flow may choose the path of least or most energy expenditure. To test this 
behavior, we evaluate the local kinetic energy at ( , , )x y z  for each eigensolution. We let 
   2 2 21 1

2 2( , , ) ( )n n n nE x y z u w= = + +u v 2
n  (23) 

where each mode is an exact solution bearing the form 

   
( ) co

sin 0
n n n n

n n n

u K x
w

sα β η
α η

= +⎧
⎨ = − =⎩v

;  ( )1
2n yη π= +  (24) 

By assuming a system of eigensolutions with individual kinetic energies, their cumulative sum can be written locally 
as 

   ( ) ( ) 2 2 2 21
2

0 0
, , , , ( ) cos sinn n n n n

n n
E x y z E x y z K x 2α β η α

∞ ∞

= =

η⎡ ⎤= = + +⎣ ⎦∑ ∑  (25) 

The total kinetic energy in the chamber volume V  may be calculated by integrating the local kinetic energy over the 
length and chamber cross-section, assuming unit depth.  One puts 

   
1
2

1
2

1 1 L 2 2 2 2 21
21 0 1 0

0
d d d ( ) cos sin d d

L
V n n n n x y

n
E E x y z K xα β η α η

∞

− − −
=

⎡ ⎤= = + +⎣ ⎦∑∫ ∫ ∫ ∫ ∫  (26) 

Straightforward evaluation and simplification over the chamber volume yields 

   3 2 1 2 21
6

0
3V n n n n n

n
E L a b L c L Lα α α

∞
2

n
− −

=

= + + +∑ −

2 2
n

 (27) 

where 
   2 2; 3 ; 3n n n n n n na K b K c Kβ β= = =  (28) 
At this point, one may seek to locate a possible extremum of the total kinetic energy subject to the fundamental 
constraint 

   
0
( 1) 1α

∞

=

− =∑ n
n

n
  (29) 

To make further headway, the method of Lagrangian multipliers may be conveniently employed by first defining the 
constrained energy function 

    
0
( 1) 1n

V
n

g E λ α
∞

=
n

⎡ ⎤
= + − −⎢ ⎥

⎣ ⎦
∑  (30) 

Equation (27) can then be maximized or minimized by imposing 0 1 2( , , ,..., , ) 0g α α α λ∇ =… . Specifically, one puts 
   { }( , ) 0 0,1, 2...,ng nα λ∇ = = ∞  (31) 
Subsequently, the constrained energy function may be differentiated with respect to each of its variables to obtain 

   
( ) { }3 1 21

6 2 6 ( 1) 0; 0,1, 2...,n
n n n n

n

L a b L L nα α λ
α

− −= + + + − = =
∂

g∂
∞

 
(32) 

   
0
( 1) 1 0n

n
n

α
λ =

g ∞∂
= − − =

∂ ∑  (33) 

Equation (32) can be solved for { }nα  in terms of λ  such that 

   
( )

3 16( 1)n L b Lλ
22 3

n
n

na L
α

− −− +
+ −

 (34) = −

The outcome is then substituted into Eq. (33) to retrieve 

   
( ) ( )

( )

1∞
3 2 2

0
12

0

2 1 3

6 3

n
n n

n

n
n

L L b a L

a L
λ

−−

=
∞ −−

=

+ − +
= −

+

∑

∑
 (35) 
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Table 1. Sidewall injection sequence and kinetic energy density for several injection profiles 
 

When λ  is inserted back into Eq. (34), the general solution for { }nα  is extracted. This is 

   
( )
( )

1 2
2

3

1
3

n
n

n
S b S

a L S
α

−

− −
=

n +
 (36) 

where 

   

( ) ( )

( )

11 22 1 3i
i ib a L

−− −− +1
0i

S L
∞

=

⎧
= +⎪ ∑

11 2

0

3 2

1 33 tanh
2 3

32 tanh
3

i
i

S L a L
L

LS
L

∞ −− −

=

⎪
⎪ ⎛ ⎞⎪ = + = ⎜ ⎟⎨

⎝ ⎠

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

∑2

S L

⎪
⎪
⎪
⎪⎩

 (37) 

With the determination of { }nα , the total energy given by Eq. (27) is at hand. In certain cases, { }nα  is amenable to 
closed form as shown in Table 1 for inert, uniform and Poiseuille injection. Furthermore, given that the Taylor 
model is semi-infinite, it is useful to introduce a suitable form of energy density such as VE .  Closed form 
expressions for the kinetic energy density are given in Table 1. Then by plotting E  versus 

3/E L=
L  in Fig. 2, one is able 

to assess the energy requirements associated with several standard headwall injection profiles.  It can thus be seen 
that, for cu , the headwall injection profiles that are accompanied by the most kinetic energy are, in descending 
order, the uniform, Poiseuille, Berman (half-cosine), and inert solutions.  One also finds that, as the length of the 
chamber is increased at fixed height, E  approaches a constant asymptotic value of ∞E  for each of 
the headwall injection patterns.  A critical aspect ratio cr  can therefore be conceived beyond which the kinetic 
energy varies by less than 7.5% from its final asymptotic value 

1=

1/ 3 0.334− = �
L

.−
∞E   The choice of a 7.5% variation is dictated by 

the slow monotonic decay of the kinetic energy density function shown in Fig. 2. Although the slope slips to 1% 
rather rapidly, its progression to the asymptotic value is exceedingly slow. For a chamber with cr , one may 
safely assume an infinitely long chamber in evaluating Eq. 

≥L L
(36), thereby achieving a substantial reduction in 

complexity.  In practice, when the headwall injection 
velocity is of order unity, as in the case of solid rocket 
motors (SRMs), the critical aspect ratio is relatively low.  
For example, using 11, 2cu , 3 / 2π=  (i.e. assuming that 
headwall and sidewall grain surfaces are burning at equal 
rates, so that =c wU ),4 cr  can be calculated to be 
41.29, 41.34, and 41.33 for the uniform, Berman, and 
Poiseuille solutions, respectively. It is interesting to note 
that the critical length in this case is almost twice as large 
as that for the cylindrical case.5 

U L

→ ∞

 A simple case may be illustrated for a slab rocket 
chamber with an aspect ratio that exceeds . By letting 

, Eq. 
crL

L (36) reduces to 

( )0u y { } nα   E

0  
( )

( )2 2 2

8 3 1 3
2 1

n L
n Lπ

⎛ ⎞− coth
12 L⎜ ⎟

⎝ ⎠+ +
1 3coth

3
 

LL
⎛ ⎞
⎜ ⎟
⎝ ⎠
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cu { }inertnα  
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c cu u L

L
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n
c

n
L u
n

α
π

−
−

+
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2 2 2 2 21
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1
3
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∞ =
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E

 
Figure 2. Variation of the total kinetic energy for each of 
the classic headwall injection profiles.  Results are shown 
for a headwall-to-sidewall injection velocity ratio of unity. 

6 
American Institute of Aeronautics and Astronautics 

 



   
1

1
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0

8( 1)( 1)
(2 1)

α
π

−∞
−

=

⎛ ⎞ −
= − =⎜ ⎟ +⎝ ⎠

∑
n

n
n n i

i
a a

n 2
 (38) 

This simple relation identically satisfies the fundamental constraint expressed through Eq. (29).  More importantly, 
Eq. (38) establishes that, for long channels, { }αn  becomes independent of the headwall injection sequence { }βn . 
This grants { }αn  a universal character, namely, specificity that is independent of the imposed fore-end profile.  To 
explain this behavior, two reasons may be offered.  Firstly, the effect of headwall injection diminishes so rapidly in 
the downstream direction that it becomes negligible in sufficiently long channels.  Such depreciation is corroborated 
by the results obtained in previous studies that consider the fundamental Taylor type solution with arbitrary 
injection.4,9  Secondly, it may be remarked that sidewall injection constitutes the essential driver for Taylor’s model.  
At the outset, any alteration to the sidewall mass addition will significantly change the solution.  Conversely, 
altering headwall injection has no bearing on the ensuing profile.10   Given sufficient distance from the headwall, all 
flows will eventually evolve to the self-similar form obtained with no headwall injection. 

C. Least Kinetic Energy Solution 
 While the Lagrangian optimization allows us to locate the problem’s extremum, it does not provide a hint on 
whether the result corresponds to a maximum or a minimum. The simplest way to obtain this information is to 
substitute Eq. (38) into Eq. (27) and compare the energy content of the new solution with that of Taylor’s. Our 
method exposes the solution that expends the least kinetic energy. The minimum energy solution for the inert 
headwall case can thus be written as 

   1
22 2

0

8 ( 1)( , ) sin (2 1)
(2 1)n

n

x y x n
n

yψ π
π =

−
=

∞

+⎡ ⎤⎣ ⎦+∑  (39) 

For other injection profiles, { }nα  remains the same while { }nβ  varies according to the imposed fore-end flow 
distribution. The streamfunctions and axial velocities with least kinetic energy are posted in Table 2 using four 
different headwall injection patterns. The normal velocity component is the same regardless of the headwall 
injection profile. This is given by  

   ( ) 1
22 2

0

8 ( 1) sin (2 1)
(2 1)n

n

y n
n

yπ
π =

= − +
∞ −

⎡ ⎤⎣ ⎦+∑v  (40) 

Other possible solutions could be just as easily obtained by direct substitution and evaluation of Eqs. (36), (20), and 
(19).  Corresponding streamlines are illustrated in Fig. 3 for zero headwall injection as well as for uniform, Berman 
(half cosine), and Poiseuille configurations.  Using solid lines to denote the traditional Taylor’s, the solutions with 
least kinetic energy are shown using broken lines. These exhibit steep curvatures that are reminiscent of those 
associated with turbulent or compressible flow motions.11 

Table 2. Mean flow streamfunction and axial velocity with least kinetic energy 
 

Headwall injection Stream function Axial velocity 
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Figure 3. Comparison of the Taylor (solid) streamlines and the Type I least kinetic energy solutions with steeper
curvature (broken lines). 
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IV. Generalization 
 So far a Taylor type solution has been captured bearing the minimum kinetic energy that the flow may be able to 
sustain.  It would be valuable to identify other mean flow solutions that exhibit increasing or decreasing levels of 
kinetic energy, specifically those leading to the flowfield with maximum energy requirement.  It would also be 
instructive to rank the Taylor solution according to its energy content within the set of possible solutions.  To this 
end, we consider long channels and make use of Eq. (38) as a guide. As indicated earlier, the source of flow 
alteration stems from sidewall injection, and thus the sidewall injection sequence { }αn  will comprise the key 
parameters that control the energy level for a given flowfield. 

A. Type I Solutions with Increasing Energy Levels 
 From this standpoint, we introduce an alternative formulation for { }αn .  Inspired by the form obtained through 
Lagrangian optimization, we note that 

   
( )
( )

2
2 2

18( 1)
(2 1) 2 1

α
π

−−
=

+ +
∼

nn

n 2

A
n n

 (41) 

where 2
2 8/π=A  can be deduced from the lateral inflow requirement given by Eq. (29).  Its subscript is connected 

with the power of (2  in the denominator.  In our attempt to generalize, we assume the generic Type I form 1)+n

   
( ) ( )

( )
1

;
2 1

n
q

n q

A
q

n
α − −

2q= ≥
+

 (42) 

where  reproduces the state of least energy consumption.  Note that the ‘minus’ sign in the superscript denotes 
energies that are lower than Taylor’s.  This relation can be made to satisfy Eq. 

2=q
(29) when  

   
( )
( )0

1
( 1) 1

2 1

∞

=

−
− =

+
∑

n
qn
q

n

A

n
     or     

( )
1

0

1 1 ; ( )
( )(1 2 )2 1

q
q q kq

n

A q
qn

ζ
ζ

∞ −
∞ − =

−

=

= = =
−+

∑
∑

k  (43) 

where ζ  is Riemann’s zeta function.  Note that the  condition is needed to ensure series convergence down to 
the vorticity.  Backward substitution enables us to collect the proper form of {

2≥q
}αn , namely, 

   ( ) ( )

( ) ( )

( ) ( )

0

1 1 2 1
;

( )(1 2 )2 1 2 1

n n

2n q
q q

k

n
q q

qn k
α

ζ

−
−

∞ −
−

=

− − +
= = ≥

−+ +∑

q

    (Type I) (44) 

The exponent q  may be dubbed the kinetic energy power index.  With the form given by Eq. (44), one can plot the 
variation of the total kinetic energy versus the kinetic energy power index .  This plot is shown in Fig. 4a for an 
inert headwall.  Interestingly, as , Taylor’s classic solution is strictly recovered.  In fact, using Eq. 

q
→ ∞q (44), it 

can be demonstrated that 

    (45) ( )
1; 0

lim
0; otherwisenq

n
qα −

→∞

=⎧
= ⎨

⎩
This result identically reproduces Taylor’s expression. All of the Type I solutions that can be precipitated from Eq. 
(44) possess kinetic energies that are lower than Taylor’s.  They can be bracketed between Eq. (39) and 

1
2( , ) sin( )x y x yψ π= .  In practice, all solutions with  will be Taylor-like as their energies will differ by less 

than 1%.  The most distinct solutions correspond to 
5q ≥

q = 2, 3, and 4 with energies that are 81.04, 91.7, and 97.26% of 
Taylor’s.  

B. Type II Solutions with Decreasing Energy Levels 
 To capture solutions with energies that exceed that of Taylor’s, a modified formulation for { }αn  is required. 
One may set  

   ( )
( )

;
2 1

q
n q

B
q

n
α + 2q= ≥

+
 (46) 

The key difference here stands in the exclusion of the ( )1− n  multiplier which was previously retained in Eq. (42).  
Unless this term is lumped into qB , no solutions can be identified with energies higher than Taylor’s.  Again, the 
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Figure 4. Total kinetic energy density in a simulated SRM chamber for either (a,c) Type I solutions (left) with increasing
energy levels or (b,d) Type II solutions (right) with decreasing energy levels.  Results are for L = 10 (top) and 20 (bottom).

‘plus’ sign in the superscript denotes energies that are higher than Taylor’s.  The remaining steps follow similar lines 
as before.  Substitution into Eq. (29) unravels 

   
( )0

( 1) 1
2 1

∞

=

− =
+

∑ qn
q

n

B

n
     or     

( ) ( )
31

4 4

0

1 4
( , ) ( , )1 2 1

q

q
n q

n

B
q qn ζ ζ∞

−

=

= =
−− +∑

 (47) 

where ( , )q xζ  is the generalized Riemann zeta function.  Following subtitution back into Eq. (46), we retrieve 

   ( ) ( )

( ) ( )

( )
31

4 4

0

2 1 4 2 1
( , ) ( , )1 2 1

q qq

n
k q

k

n n
q

q qk
α

ζ ζ

− −
+

∞
−

=

+ +
= =

−− +∑
    (Type II) (48) 

It can be shown that all Type II solutions emerging from Eq. (48) dispose of higher kinetic energies than Taylor’s. 
The variation of the solution with respect to q  is illustrated in Figs. 5b and 5c. According to this form of { }  
Taylor’s model is recoverable asymptotically by taking the limit as .  Here too, most of the solutions will 
exhibit energies that lie within 1% of Taylor’s. The most interesting solutions are, in descending order, those 
corresponding to 2, 3, and 4 with energies that are 47.03, 8.08, and 2.40% larger than Taylor’s.  When the 
energy level is fixed at , a simplification follows.  Catalan’s constant emerges in Eq. 

,nα +

→ ∞q

q =
2q = (48), namely, in the form 

    (49) 2
0
( 1) (2 1) 0.915966k

k
k −

=
= − +∑ �C

∞

Several Type II solutions that carry the most energy ( )2q =  are plotted in Fig. 5 and listed in Table 3.  In Fig. 5, the 
Type II approximations are seen to overshoot the Taylor streamline curvature for four cases corresponding to 
different headwall injection patterns. These cover standard configurations such as: a) inert headwall, b) uniform 
flow, c) Berman’s half cosine, and d) Poiseuille profiles. 
 
 
 

10 
American Institute of Aeronautics and Astronautics 

 



0.0

0.2

0.4

0.6

0.8

1.0

y

a)  inert headwall 

0.0

0.2

0.4

0.6

0.8

1.0

y

b)  uniform flow 

0.0

0.2

0.4

0.6

0.8

1.0

y

c)  Berman’s half cosine 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y

d)  Poiseuille flow 
 
Figure 5. Comparison of the Taylor (solid) streamlines and the Type II energy-maximized Taylor solutions with 
overshooting curvature (broken lines).  
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Table 3. Mean flow solutions with most kinetic energy for several headwall injection patterns 
 

Headwall injection Stream function Axial velocity 

0 ( )u r  ( , )x yψ + + ( , )u x y  

 

C. Energy Brackets 
The two types of solutions obtained so far have energies that either exceed or lag that of Taylor’s. Since both 

families converge to Taylor’s as q is increased, it may be viewed as a stable saddle point to which these 
approximations are bound to converge.  In Fig. 6, the least and most kinetic energy densities corresponding to 2q =  
are compared to Taylor’s given several headwall injection shapes.  Evidently, the curve obtained for Taylor’s bisects 
the range of possible excursions in energy associated with the Type I and Type II solutions. 

D. Velocity and Vorticity 
 As an illustration of the effect of the kinetic energy on the velocity profile, axial and radial velocity plots are 
shown in Fig. 7 for a channel with an inert headwall.  The vorticity may be determined from 

     ( ) ( )221
4

0
2 1 sinz

n
n x

x y n n
uω π α β

=

= − = + +
∂ ∂ ∑ η

∞∂ ∂v  (50) 

This expression is evaluated for the least and most kinetic energy formulations ( )2q = , as well as for the 
representative injection profiles considered in this work. These are provided in Table 4.  A close inspection of these 
solutions reveals that the vorticity associated with the least kinetic energy consists solely of the vorticity contributed 
by headwall injection because the contribution from the sidewall, i.e. the summation term containing { }nα , is 
identically zero inside the channel.  Mathematically, this can be written as 
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Table 4. Vorticity with least or most kinetic energy for several headwall injection patterns 

 

Headwall injection Type I vorticity Type II vorticity 
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This relation clearly explains the absence of vorticity in the uniform injection profile given that ( )0 cu y u=  is 
strictly irrotational. 

E. Asymptotic Behavior of the Kinetic Energy Density 
Up to this point, the large aspect ratio approximation has been solely used in computing { }nα , but the full 

expression is left intact in calculating the kinetic energy.  Here we compute the limit of the kinetic e gy density as 
 for both Type I and Type II solutions.  In general, provided that  is finite, the limit of the kinetic energy 
can be expressed as 

     

ner
L → ∞
density 

cu

( ) ( )2 22 21
24

0 0
2 1 2 1n n

n n
n n 2π α α

∞ ∞
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∞ ∞
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Figure 6. Total kinetic energy density for Type I and Type II solutions tailing and leading Taylor’s.  Results are shown 
for L = 10 (left) and 20 (right) given: (a,b) uniform, (c,d) Berman, and (e,f) Poiseuille headwall injection profiles. 
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where 2 / 24 0.4112π∞
∞ ≡ �E  represents the asymptotic li

and q → ∞ ).  For the Type I solutions, substitution of Eq. 
m  

(

it of the kinetic energy of the Taylor solution ( L → ∞
(44) yields 
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In like manner, for the Type II solutions, Eq. (48) leads to 

     ( ) ( ) ( )
2

1 2 1k q

k n
q k

−∞ ∞
+ ∞

∞ ∞
= =

⎡ ⎤ 2 2
231

0 0 4 4

4 (4 4) (2 2)2 1
[ ( , ) ( , )]

q q
q qn

q q
ζ

ζ ζ
− − ∞

∞
− −

+ =
−

E  (54) 

pendent of headwall injection ( cu  or n

= − +⎢ ⎥
⎣ ⎦
∑ ∑E E

It is interesting to note that these asymptotic limits are inde β ).  Specific 
values of these limits are ( ) ( )2, 4,6 0.33,0.40,0.41−

∞ =E  for the Type I, and ( ) ( )2, 4,6 0.61,0.42,0.41+
∞ =E  for the 

 below or above.  Since these limits are quickly achieved as the length 
to simulated rocket motor flows.  The energy associated 
d from Fig. 8.  Note that the Taylor-Culick limit of 

∞  and Type II solutions with differences of less than 
( )(

Type II.  Both types approach ∞
∞E  either from

of the chamber is increased, they are directly applicable 
with each kinetic energy power index may be inferre

0.4112∞ =E  is practically reached by both Type I
)6 /∞ ∞

∞ ∞ ∞−E E E
 
0.29% and 0.27% at 6,q =  respectively.  Given the maximum range at 2,q =  the total 

allowable excursion in energy that the mean flow can undergo may be readily estimated at 
( ) ( )2 2 / 66%,+ − ∞

∞ ∞ ∞⎡ ⎤−⎣ ⎦ �E E E  an appreciable portion of the available energy. 

V. Convergence 
 Using the absolute and ratio tests, the series solutions presented in this work are carefully checked for 
convergence.  We find that all series converge provided that the energy power index is greater than 2. The most 
subtle cases correspond to the limiting solutions with 2q =  where differentiation is not always valid.  In general, 
term by term differentiation may be used provided the singularity points are excluded from the domain of interest.  
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Figure 7. Effect of the energy power index on the velocity field for the flow with an inert headwall; (a) turn angle, (b) 
normal velocity, and (c) axial velocity. 
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diverges at the centerline.  A simple remedy for 
avoiding the difficulties associated with term by term 
differentiation consists of using closed form 
representations of the series in question.  In the interest 
of clarity, the Type II inert injection solution is 
examined.  Here we start with the streamfunction 
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1x y x n y
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The absolute convergence test may then be implemented 
to show that 
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The right-hand-side of Eq. (56) converges whenever 
.  For the limiting case of  care should be 

valuating first and rivatives because 
term-by-term differentiation cannot be applied.  Instead, a  form representation of th ivative of Eq. 
(55) is obtained.  At we transform the infinite series i
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Figure 8. Asymptotic limits of the kinetic energy density 
for large L showing rapid convergence of both Type I and 
Type II solutions to the Taylor value of 0.4112. 
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Subsequent differentiation of Eq. (57) yields a closed form expression for vorticity, namely, 
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odels for the flow in a rocket chamber have been extensively used in the 
propulsion community as a benchmark venue for understanding the various flow features in a solid rocket motor.  

riable headwall injection could be accommodated in both 
Ca ectio

energie
the profile with least kinetic energy, similar (Type I) solutions are unraveled in 

, up to Taylor’s. The latter is asym
ns become indiscernible from Tayl

terpart
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