Code

Fluent udf: Polar to Cartesian Coordinate Transformation

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/***************************************************************************************************
 THIS CODE ILLUSTRATES HOW TO CONVERT AN ANALYTICAL SOLUTION FROM POLAR COORDINATES TO
 CARTESIAN COORDINATES AND SUBSEQUENTLY BE USED TO INITIALIZE A FLUENT SIMULATION
 THIS ONLY WORKS FOR 2D SIMULATIONS.
 Coded by Tony Saad, © 2008
***************************************************************************************************/
#include "udf.h"
#define Pi 3.141592653
 
DEFINE_INIT(Initialize_Velocity_Field, theDomain)
{
 real xCentroid=0.0; /* abscissa of the cell centroid */
 real yCentroid = 0.0; /* ordinate of the cell centroid */
 real rCentroidMagnitude = 0.0; /* magnitude of the position vector */
 real theta = 0.0; /* angle made by the position vector and the x axis */
 real uR = 0.0; /* radial velocity (given by the analytical solution) */
 real uRx =0.0; /* x projection of the radial velocity */
 real uRy = 0.0; /* y projection of the radial velocity */
 real uTheta = 0.0; /* tangential velocity (given by the analytical solution) */
 real uThetax = 0.0; /* x projection of the tangential velocity */
 real uThetay = 0.0; /* y projection of the tangential velocity */
 /*declare thread variables*/
 cell_t theCell;
 real cellCentroidCoordinates[ND_ND];
 real origin[ND_ND];
 Thread* theThread;
 
 /*-------------------------------------------*/
 /* SET THE LOCATION OF THE ORIGIN */
 origin[0] = 0.0;
 origin[1] = 0.0;
 /*-------------------------------------------*/
 
 /* Loop over all cell threads in the domain*/
 thread_loop_c(theThread,theDomain) {
 /* loop over all cells in the domain thread */
 begin_c_loop_all (theCell,theThread) {
 
 /* get the centroid of the current cell */
 C_CENTROID(cellCentroidCoordinates,theCell,theThread);
 /* take into account the location of the origin */
 cellCentroidCoordinates[0] -= origin[0];
 cellCentroidCoordinates[1] -= origin[1];
 
 /* store the centroid location for ease of access */
 xCentroid = cellCentroidCoordinates[0];
 yCentroid = cellCentroidCoordinates[1];
 
 /* compute the radius of the current cell */
 rCentroidMagnitude = NV_MAG(cellCentroidCoordinates);
 
 /*-------------------------------------------*/
 /* DEFINE THE RADIAL AND AXIAL VELOCITIES */
 /* ENTER YOUR ANALYTICAL SOLUTION HERE */
 uR = - rCentroidMagnitude;
 uTheta = 1/(rCentroidMagnitude + 1/rCentroidMagnitude);
 /*-------------------------------------------*/
 
 /* compute the angle made by the position vector and the x-axis */
 theta = atan(fabs(yCentroid/xCentroid));
 if (xCentroid<=0 && yCentroid>=0) {
 theta = Pi - theta;
 } else if (xCentroid<=0 && yCentroid<=0) {
 theta += Pi;
 } else if (xCentroid>0 && yCentroid<0) {
 theta =2*Pi - theta;
 }
 
 /* compute the x and y components of the radial velocity */
 uRx = uR*cos(theta);
 uRy = uR*sin(theta);
 
 /* compute the x and y components of the tangential velocity */
 uThetax = uTheta*cos(theta + Pi/2);
 uThetay = uTheta*sin(theta + Pi/2);
 
 /*set the x and y velocities in fluent*/
 C_U(theCell,theThread) = uRx + uThetax;
 C_V(theCell,theThread) = uRy + uThetay;
 }
 end_c_loop_all (theCell,theThread)
 }
}

Leave a Reply